## General Information About the S1000

The S1000 sampler is the successor to the S900 and bears some similarity to it. Program, keygroup and sample header data is stored in blocks all of the same size (about 150 bytes). There are about 480 blocks available.

A program consists of one block containing common data and then one block per keygroup, containing data unique to its key-span. Unlike the S900, each keygroup has four velocity zones which behave rather like four adjacent keygroups but in the velocity domain, each containing data unique to its velocity range. Each velocity zone names one sample.

A sample consists of a header which uses one block and the sample data itself which is stored in separate memory of minimum size 1 MB words and max 4 MB words. (Other samplers in the family may have 16 MB words max) Unlike the S900 the sample header contains information about several loops and the looping point (of each loop) is independent of the end of the sample. Samples data is presented in 16-bit straight binary form. (peak levels are 0 and FFFFh)

The S1000 has two sample inputs and can sample in stereo. At this stage it appears that this has few consequences for an external editor as the stereo concept ceases to exist once the sampling process has finished; the stereo pair of samples can be treated as two separate samples. However, there may be some internal stereo pair editing functions which operate if the sample names have the last two characters of their names as "-L" and "-R"

The S1000 is capable of running several programs simultaneously and this operates on the basis of allowing more than one program to share the same (MIDI) program number. MIDI play commands (note on/off, bend etc.) operate on all resident programs which have the same program number as the S1000's selected program number. The S1000 has 16 real-time allocated internal voices which are assigned by program data to one of 8 physical mono outputs and/or stereo outputs with left/right pan control and a mono echo send.

The S1000 uses custom LSI devices to perform sample playback, envelope control, channel routing etc. Only forward sample playback and looping is possible. Resident samples can be "resampled" at a new equivalent rate for retuning, the appropriate interpolation or decimation being carried out at high speed by special hardware.

The user interface consists of a 240x64 graphic screen, two S900-like rotary encoders and a similar set of function and numeric keys. In addition, there are 8 "soft" function keys under the screen. Where possible program and sample parameters are presented in logical groups on the same page and graphic images are used to aid programming (e.g. sample plots and ADSR graphs). There are about 35 screen "pages" in all which could perhaps be reduced to about 8 pages on a full CRT. Functions such as sample amplitude normalize, time reverse, cross-fade looping, visual loop point matching and real-time parameter editing are provided.

The Following MIDI Exclusive Functions Will Be Provided: 1) Standard MIDI Sample Dump

This conforms to the MIDI 1.0 Addendum Revision 3.3 and includes retransmission of data packets with checksum errors. Any legal number of sample data bits can be received (but will be truncated or padded to 16 bits). The sample NUMBER is treated as follows: on transmit, the number is simply that of the order in which the sample is stored in the S1000 at the time. On receive, the sample is stored as the next in memory.

It is given a default name of "MIDI nnnnn" where nnnnn is the received number in decimal form. If the name formed this way is the name of an existing sample, that sample will be replaced by the new sample. Note that the S1000 has only two possible sampling rates: 44100 and 22050 KHz. The S1000 sample header created on receipt of a standard sample dump has a tuning offset parameter which is adjusted to compensate for sampling rates other than these. Note also that up to 63 (dummy) sample words may be inserted at the beginning of the sample to conform with S1000 internal requirements.

2) Akai S1000/S1100 Exclusive Messages

The first 5 bytes of all S1000 messages have the form: F0h Exclusive 47h Akai cc Exclusive Channel (0-127) ff Function Code 48h S1000

Unless stated, groups of bytes in messages represent concatenated 7-bit sections of a data word, LSB first

The functions provided are:

> denotes from S1000, < denotes to S1000 ff mnem. direction 00h RSTAT < request S1000 status 01h STAT > S1000 status report 02h RPLIST < request list of resident program names 03h PLIST > list of resident program names 04h RSLIST < request list of resident sample names 05h SLIST > list of resident sample names 06h RPDATA < request program common data 07h PDATA <> program common data 08h RKDATA < request keygroup data 09h KDATA <> keygroup data 0Ah RSDATA < request sample header data 0Bh SDATA <> sample header data 0Ch RSPACK < request sample data packet(s) 0Dh ASPACK < accept sample data packet(s) 0Eh RDDATA < request drum input settings 0Fh DDATA <> drum input settings 10h RMDATA < request miscellaneous data 11h MDATA <> miscellaneous data 12h DELP < delete program and its keygroups 13h DELK < delete keygroup 14h DELS < delete sample header and data 15h SETEX < set S1000 exclusive channel 16h REPLY > S1000 command reply (error or ok) 1Dh CASPACK < corrected ASPACK

Request S1000 Status

F0, 47, cc, RSTAT, 48, F7

S1000 status report

F0, 47, cc, STAT, 48, vv,VV S1000 software version VV.vv bb,bb maximum number of program, keygroup, sample header blocks fb,fb number of blocks free ww,ww,ww,ww maximum number of sample words fw,fw,fw,fw number of words free ec current exclusive channel setting F7 eox

Request List of Resident Program Names

F0, 47, cc, RPLIST, 48, F7

List of Resident Program Names

F0, 47, cc, PLIST, 48,
pp,pp number of resident programs
12 bytes program 1 name (in non-ascii form - see below)
12 bytes program 2 name
... etc.
F7 eox

Request List of Resident Sample Names

F0, 47, cc, RSLIST, 48, F7

List of Resident Sample Names

F0, 47, cc, SLIST, 48, ss,ss number of resident samples 12 bytes sample 1 name 12 bytes sample 2 name ...etc. F7 eox

Request Program Common Data

F0, 47, cc, RPDATA, 48, pp,pp program number F7 eox If the program number is higher than the highest program in the S1000, an error message will be given instead of data.

Program Common Data

F0, 47, cc, PDATA, 48, pp,pp program number In,hn first byte of data in low/high nibble form (see below) In,hn second byte ...etc. F7 eox

This a bidirectional message. In the case of transmitting to the S1000, if the program number is above the highest existing program number, a new program will be created (if sufficient blocks are free -one for the program common block and one for each keygroup as specified by the parameter GROUPS). The created program will have dummy keygroups with unspecified data; the appropriate number of keygroup data messages should be given immediately. If the program name in data is the same as that of any existing program, that program will be deleted first. If the program number is of an existing program, the existing data will be replaced but the parameter GROUPS must be correct. This allows complete freedom to change

parameters - the use of a duplicate program name should be avoided. If either error situation occurs, an error message will be given, otherwise an OK message will be given.

Request Keygroup Data

F0, 47, cc, RKDATA, 48,pp,pp program numberkk keygroup numberF7 eoxIf the keygroup number is higher than the highest keygroup in the program, an error message will be given instead of data.

Keygroup Data

F0, 47, cc, KDATA, 48,
pp,pp program number
kk keygroup number
In,hn first byte of data in low/high nibble form (see below)
In,hn second byte
...etc.
F7 eox
This a bidirectional message. In the case of transmitting to the S1000, if the keygroup number is above the highest existing keygroup number, a new keygroup will be created if a block is free, otherwise the existing

highest existing keygroup number, a new keygroup will be created if a block is free, otherwise the existing keygroup will be replaced. The use of program number 255 is a special case where the keygroup data will be installed in program previously created. This avoids the need to read the program list to find out what number was allocated to that program. If there are no free blocks for a new keygroup, an error message will be given.

Request Sample Data Header

F0, 47, cc, RSDATA, 48, ss,ss sample numberF7 eoxIf the sample number is higher than the highest sample in the S1000, an error message will be given instead of data.

Sample Header Data

F0, 47, cc, SDATA, 48,
ss,ss sample number
In,hn first byte of data in low/high nibble form (see below)
In,hn second byte
...etc.
F7 eox
This a bidirectional message. In the case of transmitting to

This a bidirectional message. In the case of transmitting to the S1000, if the sample number is above the highest existing sample number, a new sample will be created (if a blocks is free and the sample length specified in the header is not too great) and this should be followed by the appropriate sample data packets. If the name in the data is the same as that of an existing sample, it will be deleted first (preceeded by a standard dump WAIT message). If the sample number is of an existing sample, the existing data will be replaced but the sample length parameter SLNGTH must be correct. This allows complete freedom to change parameters - the use of a duplicate name should be avoided. If a new sample cannot be created, an error message will be given, otherwise an OK message will be given. On receipt of a sample header which creates a new sample, the S1000 will behave as if it has received a standard MIDI dump header and if standard MIDI dump is to be used, the data packets should follow immediately. Alternatively, the data can be delivered after an ACCEPT PACKETS command which gives greater flexibility.

## Request Sample Data Packet(s)

F0, 47, cc, RSPACK, 48, ss,ss sample number oo,oo,oo,oo address offset from start of sample nn,nn,nn,nn number of samples required ii interval between samples if interval function:- 0=single sample 1=average 2=peak F7 eox If the sample number is higher than the highest s

If the sample number is higher than the highest sample in the S1000, an error message will be given instead of data. Otherwise data packet transmission will commence and continue as per standard MIDI dump. If the interval number is greater than 1, the samples will be the function of groups of that number of samples, according to the interval function. The number of samples transmitted will be n/i.

Accept Sample Data Packet(s)

F0, 47, cc, ASPACK, 48, ss,ss sample number oo,oo,oo,oo address offset from start of sample nn,nn,nn,nn number of samples to be delivered F7 eox

If the sample number is higher than the highest sample in the S1000, an error message will be given. Otherwise a standard MIDI dump ACK message will be given and data packet transmission can commence and continue as per standard MIDI dump.

Request Drum Input Data

F0, 47, cc, RDDATA, 48, F7

Drum Input Data

F0, 47, cc, DDATA, 48,
In,hn first byte of data in low/high nibble form (see below)
In,hn second byte
...etc.
F7 eox
This is a bidirectional message.

Request Miscellaneous Data

F0, 47, cc, RMDATA, 48, F7

Miscellaneous Data

F0, 47, cc, MDATA, 48,
In,hn first byte of data in low/high nibble form (see below)
In,hn second byte
...etc.
F7 eox
This is a bidirectional message.

Delete Program and its Keygroups

F0, 47, cc, DELP, 48,

pp,pp program number F7 eox

Delete Keygroup

F0, 47, cc, DELK, 48, pp,pp program number kk keygroup number F7 eox

Delete Sample Header and Data

F0, 47, cc, DELS, 48,ss,ss sample numberF7 eoxIf the argument in any of the delete commands exceeds the maximum, an error message will be given.

Set S1000 Exclusive Channel

F0, 47, cc, SETEX, 48, F7 The S1000 exclusive channel will be set to cc.

S1000 Command Reply

F0, 47, cc, REPLY, 48, mm reply message: -0=ok 1=error F7 eox

The following are extracts from assembler files showing the data block structures of program, keygroup, sample-header, drum and miscellaneous files. All bytes are transmitted in LOW-NIBBLE/HIGH-NIBBLE form. Note that names (always 12 characters) in the S1000, including PLIST and SLIST are NOT in ASCII form; they are coded thus:

byte ASCII equiv 0-9 "0"-"9" 10 " " 11-36 "A"-"Z" 37 "#" 38 "+" 39 "-" 40 "." Bytes in name fields must be limited to this range.

Program Common Header Block (PDATA) PRIDENT DB 1 ;1=PROGRAM HEADER BLOCK IDENTIFIER KGRP1@ DW ? ;1st KEYGROUP BLOCK ADDRESS (INTERNAL USE) PRNAME DB 12 DUP (?) ;NAME PRGNUM DB ? ;MIDI PROGRAM NUMBER (0-127) PMCHAN DB ? ;MIDI CHANNEL (0-15. FFh=OMNI) POLYPH DB ? ;POLYPHONY (1-16) PRIORT DB ? ;PIORITY (0=LOW 1=NORMAL 2=HIGH 3=HOLD) PLAYLO DB ? ;PLAY-RANGE LOW (24-127 = C0-G8) PLAYHI DB ? ;PLAY-RANGE HIGH (24-127 = C0-G8) OSHIFT DB ? ;PLAY OCTAVE (KEYBOARD) SHIFT (+/-2) OUTPUT DB ? ; OUTPUT NUMBER (0-7. FFh=OFF) STEREO DB ? ; LEFT AND RIGHT LEVEL (0-99) PANPOS DB ? : LEFT/RIGHT BALANCE (+/-50) PRLOUD DB ? ;BASIC LOUDNESS (0-99) V\_LOUD DB ? ;VELOCITY>LOUDNESS (+/-50) K LOUD DB ? ;KEY>LOUDNESS (+/-50) P\_LOUD DB ? ;PRESSURE>LOUDNESS (+/-50) PANRAT DB ? ; PAN LFO RATE (0-99) PANDEP DB ? ; PAN DEPTH (0-99) PANDEL DB ? ; PAN LFO DELAY (0-99) K\_PANP DB ? ;KEY>PAN POSITION (+/-50) LFORAT DB ? ;LFO SPEED (0-99) LFODEP DB ? ; LFO FIXED DEPTH (0-99) LFODEL DB ? ; LFO DELAY (0-99) MWLDEP DB ? ; MODWHEEL>LFO DEPTH (0-99) PRSDEP DB ? ; PRESSURE>LFO DEPTH (0-99) VELDEP DB ? ; VELOCITY>LFO DEPTH (0-99) B\_PTCH DB ? ;BENDWHEEL>PITCH (0-12 SEMITONES) P\_PTCH DB ? ;PRESSURE>PITCH (+/-12 SEMITONES) KXFADE DB ? ; KEYGROUP CROSSFADE (0=OFF 1=ON) GROUPS DB ? ;NUMBER OF KEYGROUPS (1-99) TPNUM DB ? ; TEMPORARY PROGRAM NUMBER (INTERNAL USE) TEMPER DB 12 DUP (?) ;KEY TEMPERAMENT (+/-25 CENTS) C,C#,D,D# etc ECHOUT DB ? ;ECHO OUTPUT LEVEL (0=OFF 1=ON) MW\_PAN DB ? ; MOD WHEEL PAN AMOUNT (+/-50) COHERE DB ? ;SAMPLE START COHERENCE (0=OFF 1=ON) DESYNC DB ? ;LFO DE-SYNC (0=OFF 1=ON) PLAW DB ? : PITCH LAW (0=LINEAR) VASSOQ DB ? ; VOICE ASSIGN ALGORITHM (0=OLDEST 1=QUIETEST) SPLOUD DB ? ;SOFT PEDAL LOUDNESS REDUCTION (0-99) SPATT DB ? ;SOFT PEDAL ATTACK STRETCH (0-99) SPFILT DB ? ;SOFT PEDAL FILTER CLOSE (0-99) PTUNO DW ? ;TUNE OFFSET CENT:SEMI (+/-50.00 fraction is binary) K\_LRAT DB ? ;KEY>LFO RATE (+/-50) K LDEP DB ? ;KEY>LFO DEPTH (+/-50) K LDEL DB ? : KEY>LFO DELAY (+/-50) VOSCL DB ? ; VOICE OUTPUT SCALE. (0=-6DB, 1=0DB, 2=+12DB) VSSCL DB ? ;STEREO OUTPUT SCALE. (0=0DB, 1=+6DB) Keygroup Block (KDATA) ;KEYGROUP COMMON KGIDENT DB 2 ;2=KEYGROUP BLOCK IDENTIFIER NXTKG@ DW ? ;NEXT KEYGROUP BLOCK ADDRESS (INTERNAL USE) LONOTE DB ? ; KEYRANGE LOW (24-127 = C0-G8) HINOTE DB ? ;KEYRANGE HIGH (24-127 = C0-G8) KGTUNO DW ? ;TUNE OFFSET CENT:SEMI (+/-50.00 fraction is binary) FILFRQ DB ? ; BASIC FILTER FREQUENCY (0-99) K\_FREQ DB ? ;KEY>FILTER FREQ (+/-24 SEMI-TONES/OCTAVE) V\_FREQ DB ? ;VELOCITY>FILTER FREQ (+/-50) P\_FREQ DB ? ;PRESSURE>FILTER FREQ (+/-50) E\_FREQ DB ? ;ENVELOPE>FILTER FREQ (+/-50) ATTAK1 DB ? ; AMPLITUDE ATTACK (0-99) DECAY1 DB ? ; AMPLITUDE DECAY (0-99) SUSTN1 DB ? ; AMPLITUDE SUSTAIN LEVEL (0-99) RELSE1 DB ? ; AMPLITUDE RELEASE (0-99) V\_ATT1 DB ? ;VELOCITY>AMP ATTACK (+/-50)

V\_REL1 DB ? ;VELOCITY>AMP RELEASE (+/-50) O\_REL1 DB ? ; OFF VEL.>AMP RELEASE (+/-50) K DAR1 DB ? ;KEY>DECAY & RELEASE (+/-50) ATTAK2 DB ? ; FILTER ATTACK (0-99) DECAY2 DB ? ;FILTER DECAY (0-99) SUSTN2 DB ? ; FILTER SUSTAIN LEVEL (0-99) RELSE2 DB ? ;FILTER RELEASE (0-99) V\_ATT2 DB ? ; VELOCITY>FILTER ATTACK (+/-50) V\_REL2 DB ? ; VELOCITY>FILTER RELEASE (+/-50) O\_REL2 DB ? ;OFF VEL.>FILTER RELEASE (+/-50) K\_DAR2 DB ? ;KEY>DECAY & RELEASE (+/-50) V ENV2 DB ? ; VELOCITY>FILTER ENVELOPE OUTPUT (+/-50) E\_PTCH DB ? ;ENVELOPE>PITCH (+/-50) VXFADE DB ? ; VELOCITY ZONE CROSSFADE (0=OFF 1=ON) VZONES DB ? ;NUMBER OF VELOCITY ZONES IN USE (NOT USED) LKXF DB ? ;CALCULATED LEFT KEY CROSSFADE FACTOR (INTERNAL) RKXF DB ? ;CALCULATED RIGHT KEY CROSSFADE FACTOR (INTERNAL) ;VELOCITY ZONE 1 SNAME DB 12 DUP (@) ;SAMPLE NAME LOVEL DB ? ; VELOCITY RANGE LOW (0-127) HIVEL DB ? ; VELOCITY RANGE HIGH (0-127) VTUNO DW ? ;TUNE OFFSET (+/-50.00 fraction is in binary form) VLOUD DB ? ;LOUDNESS OFFSET (+/-50) VFREQ DB ? ;FILTER FREQUENCY OFFSET (+/-50) VPANO DB ? ;PAN OFFSET (+/-50) ZPLAY DB ? ;LOOP IN RELEASE (0=as sample 1-4 see below) LVXF DB ? ;LOW VELOCITY CROSSFADE FACTOR (INTERNAL USE) HVXF DB ? ;HIGH VELOCITY CROSSFADE FACTOR (INTERNAL USE) SBADD DW ? ;CALCULATED SAMPLE HEADER BLOCK ADDRESS (INTERNAL) ZBYTES EQU \$-SNAME ;BYTES PER ZONE ;VELOCITY ZONES 2-4 SNAME2 DB ZBYTES\*3 DUP (?) ;IDENTICAL TO ZONE 1 :MORE KEYGROUP COMMON KBEAT DB ? ; FIXED RATE DETUNE (BYTE) AHOLD DB ? ;ATTACK HOLD UNTIL LOOP :MORE VELOCITY ZONE ITEMS CP1 DB? CP2 DB ? CP3 DB? CP4 DB ? ;CONSTANT PITCH FOR EACH VELOCITY ZONE (0=TRACK 1=CONST) VZOUT1 DB ? VZOUT2 DB? VZOUT3 DB? VZOUT4 DB ? ;OUTPUT NUMBER OFFSET FOR EACH VELOCITY ZONE (0-7) VSS1 DW ? VSS2 DW ? VSS3 DW ? VSS4 DW ? ; VELOCITY>SAMPLE START (+/-9999) ;MORE KEYGROUP COMMON KV\_LO DB ? ; VELOCITY>LOUDNESS OFFSET(+/-50)

;ZPLAY:- TYPE OF SAMPLE PLAYBACK VALUES:-

; 0 - AS DEFINED BY SAMPLE HEADER

SHIDENT DB 3 ;3=SAMPLE HEADER BLOCK IDENTIFIER SBANDW DB ? ; BANDWIDTH (0=10KHZ 1=20 KHZ) SPITCH DB ? ;ORIGINAL PITCH (24-127 = C0-G8)

SSRVLD DB ? ;SAMPLE RATE SSRATE VALID (80H=YES) SLOOPS DB ? ;NUMBER OF LOOPS (INTERNAL USE) SALOOP DB ? ; FIRST ACTIVE LOOP (INTERNAL USE)

SPTYPE DB ? ; PLAYBACK TYPE (SEE BELOW) STUNO DW ? ;TUNE OFFSET CENT:SEMI (+/-50.00) SLOCAT DW ?,? ;DATA ABSOLUTE START ADDRESS SLNGTH DW ?,? ;DATA LENGTH (NUMBER OF SAMPLES) SSTART DW ?,? ;PLAY RELATIVE START ADDRESS SMPEND DW ?,? ;PLAY RELATIVE END ADDRESS

LBYTES EQU \$-LOOPAT ;BYTES PER LOOP

LOOP2 DW LBYTES\*7 DUP (0) ;SAME AS LOOP 1

SSPARE DB ?,? ;SPARE BYTES USED INTERNALLY

SHLTO DB ? ;HOLD LOOP TUNE OFFSET (+/-50 cents)

D10PER DB ? ;UNIT 1 IN OPERATION (0=OFF 1=ON) D1EXCH DB ? ;UNIT 1 EXCLUSIVE CHANNEL (0-15) D1THRU DB ? ;UNIT 1 MIDI THRU ENABLE (0=OFF 1=ON)

DCHAN DB ? ; DRUM MIDI CHANNEL (0-15) DNOTE DB ? ;DRUM MIDI NOTE (24-127 = C0-G8)

DSENS DB ? ; DRUM SENSITIVITY (0-127)

SSPAIR DW ? ; ADDRESS OF STEREO PARTNER (INTERNAL USE)

DRUM TRIGGER UNIT BLOCK (DATA IS FOR 2 UNITS) (DDATA)

DRNAME DB 12 DUP (?) ;NAME IN SAME PLACE AS PROGS/SAMPS

SHNAME DB 12 DUP (?) ;NAME (SAME POSITION AS PROGRAM)

LOOPAT DW ?,? ;RELATIVE LOOP POINT (BITS 0-5 ARE TREATED AS 1) LLNGTH DW ?.?.? :LOOP LENGTH (BINARY)FRACTION:INT.LOW:INT. HIGH LDWELL DW ? ; DWELL TIME (0=NO LOOP 1-9998=mSEC 9999=HOLD)

; 1 - NORMAL LOOPING

: 2 - LOOP UNTIL RELEASE

: 3 - NO LOOPING

; 4 - PLAY TO SAMPLE END

**DB**?:SPARE BYTE

:FIRST LOOP

:LOOPS 2-8

;MORE SAMPLE COMMON

SSRATE DW ? : SAMPLE RATE IN HZ

:TYPE OF PLAYBACK VALUES:-

: 0 - NORMAL LOOPING ; 1 - LOOP UNTIL RELEASE

; 3 - PLAY TO SAMPLE END

: 2 - NO LOOPING

;INPUT 1 OF UNIT 1

;UNIT 1

Sample Header Block (SDATA)

DTRIG DB ? ;DRUM TRIGGER THRESHOLD (0-127) DVCRV DB ? ;DRUM VELOCITY CURVE (0-7) DCATP DB ? ;DRUM CAPTURE TIME (0-20 mS) DRCVR DB ? ;DRUM RECOVERY TIME (0-20 mS) DONTM DW ? ;DRUM ON-TIME (0-999 mS)

DRBYTES EQU \$-DU1TAB ;BYTES PER INPUT

;INPUTS 2-8 DB DRBYTES\*7 DUP (?) ;SAME AS INPUT 1

DUBYTES EQU \$-D10PER ;BYTES PER UNIT

;UNIT 2 DB DUBYTES DUP (?) ;SAME AS UNIT 1

Miscellaneous Data Block (MDATA) BMCHAN DB ? ;BASIC MIDI CHANNEL (0-15) FOR MIDI PROGRAM SELECT BMOMNI DB ? ;BASIC CHANNEL OMNI (0=OFF 1=ON) PSELEN DB ? ;MIDI PROGRAM SELECT ENABLE (0=OFF 1=ON) SELPNM DB ? ;SELECTED PROGRAM NUMBER (0-127) OMNOVR DB ? ;MIDI PLAY COMMANDS OMNI OVERRIDE (0=OFF 1=ON) EXCHAN DB ? ;MIDI EXCLUSIVE CHANNEL (0-127)

[Reference Section]

(c)2000 Akai Musical Instrument Corp.